Cross Domain Iterative Detection for Orthogonal Time Frequency Space Modulation

نویسندگان

چکیده

Recently proposed orthogonal time frequency space (OTFS) modulation has been considered as a promising candidate for accommodating various emerging communication and sensing applications in high-mobility environments. In this paper, we propose novel cross domain iterative detection algorithm to enhance the error performance of OTFS modulation. Different from conventional methods, applies basic estimation/detection approaches both delay-Doppler (DD) iteratively updates extrinsic information two domains with unitary transformation. doing so, exploits channel sparsity DD symbol constellation constraints. We evaluate variance each iteration derive state evolution investigate performance. show that gain due iterations comes non-Gaussian constraint domain. More importantly, prove can indeed converge and, convergence, achieve almost same maximum-likelihood sequence even presence fractional Doppler shifts. Furthermore, computational complexity associated transformation is low, thanks structure discrete Fourier transform (DFT) kernel. Simulation results are consistent our analysis demonstrate significant improvement compared methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Complexity Iterative Detection for Orthogonal Time Frequency Space Modulation

We elaborate on the recently proposed orthogonal time frequency space (OTFS) modulation technique, which provides significant advantages over orthogonal frequency division multiplexing (OFDM) in Doppler channels. We first derive the input–output relation describing OTFS modulation and demodulation (mod/demod) for delay–Doppler channels with arbitrary number of paths, with given delay and Dopple...

متن کامل

Interference Cancellation and Iterative Detection for Orthogonal Time Frequency Space Modulation

The recently proposed orthogonal time frequency space (OTFS) modulation technique was shown to provide significant error performance advantages over orthogonal frequency division multiplexing (OFDM) in Doppler channels. In this paper, we first derive the explicit input–output relation describing OTFS modulation and demodulation (mod/demod) for delay–Doppler channels. We then analyze the cases o...

متن کامل

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

OTFS - Orthogonal Time Frequency Space

In this paper we introduce a new 2D modulation technique called OTFS (Orthogonal Time Frequency & Space) that transforms information carried in the Delay-Doppler coordinate system to the familiar time-frequency domain utilized by traditional modulation schemes such as OFDM, CDMA and TDMA. OTFS converts the fading, time-varying wireless channel into a non-fading, time-independent interaction rev...

متن کامل

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Wireless Communications

سال: 2022

ISSN: ['1536-1276', '1558-2248']

DOI: https://doi.org/10.1109/twc.2021.3110125